If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2+22x-37=0
a = 17; b = 22; c = -37;
Δ = b2-4ac
Δ = 222-4·17·(-37)
Δ = 3000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3000}=\sqrt{100*30}=\sqrt{100}*\sqrt{30}=10\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-10\sqrt{30}}{2*17}=\frac{-22-10\sqrt{30}}{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+10\sqrt{30}}{2*17}=\frac{-22+10\sqrt{30}}{34} $
| 98×x=50 | | 3-2(5-t)=-3 | | 2v+v-v-2v+v=15 | | 6-12x=24 | | 2x-28=x+24 | | 19t+-15t+-3t=-15 | | Y-3y-2y=0 | | -84-14=14a | | 6j-5j-j+j=8 | | -1/2=-2/r-12 | | -31+2b=7(b-8)+5 | | -19+-2d-19d-1=-11 | | 5x+24=9x(-17) | | 1/2x-1/4x=2+2 | | 8^n=16^4 | | 2|x-3|+1=7 | | 2|x−3|+1=7 | | F(x)=3x/5x+6 | | x/2|x−3|+1=7 | | 3x-1+2=9 | | 2(3y-5)=5-3(y+2) | | 21x2=x2-7x+6 | | 2,5*x=60 | | x^2+9x+13=5x^2 | | 21/2c=1575/100 | | 9=(1/27)^x+3 | | (4x+6)+(3x-8)=19 | | 2t+3(t+5)=-25 | | 10x+2=7,2x | | 5n(3.1=2n | | 6g-2(2-g)=4(2g- | | 5x+90=20 |